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Even though its applications were rarely discussed, the brief note which is referred to in the title
should be cited in the present investigations on the subject. The reason is that the mentioned study
is probably the earliest investigation developed on the adoption of approximate formulae for the
determination of frequencies of free transverse vibrations of particularly restrained beams.

As a part of a program initiated in 1952 by the Structural Research Laboratory, Department of
Civil Engineering, of the University of Illinois (USA), the professors Newmark and Veletsos [1]
pioneered the employment of the basic formulae that would be of use to structural engineers to
estimate, at the preliminary design stage, a simple approximation of the natural frequencies in the
case of beams elastically restrained against rotation at the ends.

Consider a uniform beam to be oscillating in one of its natural modes of free vibration. EI is the
modulus of flexural rigidity, m is its mass per unit length, and L denotes the span length between
supports which are non-deflecting but both of them offer a linear resistance to end rotations of the
beam (see Fig. 1).

The restraining moments at the corresponding ends are related to the end rotations by the
equations

M1 ¼ Kr1y1 and M2 ¼ Kr2y2: ð1; 2Þ

Here Kr1 and Kr2 are the rotational spring constants and they are in connection to the
characteristics of the beam by the dimensionless coefficients as follows:

b1 ¼
Kr1L

EI
and b2 ¼

Kr2L

EI
: ð3; 4Þ

It can be pointed out that for a hinged end b ¼ 0 and for a clamped end b-N:
The frequencies fn of the elastically restrained beam have been stated as the product of a

dimensionless coefficient Cn multiplied by the fundamental frequency of same beam hinged at the
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r
: ð5Þ

Furthermore, the following simple approximation for the coefficient Cn; for the fundamental
frequency (n ¼ 1) and the higher natural frequencies, was also reported in Ref. [1]:

Cn ¼ n þ
1

2

b1

5n þ b1

� �� �
n þ

1

2

b2

5n þ b2

� �� �
: ð6Þ

Additionally, when the end restraints are very small, i.e., for values of the coefficients b
approaching zero, the value of Cn is proposed under the following form:

CnDn2 þ 0:1ðb1 þ b2Þ: ð7Þ

These approximate equations are similar to those developed by the same authors in a previous
paper [2] in relation to buckling loads for partially restrained beams.

On the other hand, the general equation of frequencies for generally restrained Bernoulli–Euler
beams presented by Maurizi et al. [3], and also quoted in Refs. [4–7], can be used for a wide range
of combinations of boundary conditions. In the present study the transcendental equation is as
follows [6]:

2R1R2j1ðynÞy2
n þ ðR1 þ R2Þj6ðynÞyn � j4ðynÞ ¼ 0; ð8Þ

where

ðyn=LÞ4 ¼ k4
n ¼ o2

nðrA=EIÞ; ð9Þ

j1ðynÞ ¼ sin yn sinh yn; ð10aÞ

j4ðyÞ ¼ cos yn cosh yn � 1; ð10bÞ

j6ðynÞ ¼ sin yn cosh yn � sinh yn cos yn ð10cÞ

Fig 1. Beam elastically restrained at the ends.
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and

R1 ¼ EI=Kr1L; R2 ¼ EI=Kr2L: ð11a;bÞ

Obviously, R1 � 1=b1 and R2 � 1=b2:
In Table 1 the first five natural frequencies of a beam elastically restrained against rotation at

the ends are presented. Numerical results were determined by means of expression (6) (henceforth
N–V) and subsequent application of Eq. (5) and are tabulated for various dimensionless
coefficients b: Additionally, the free vibration frequencies were computed according to the
Bernoulli–Euler theory by employing Eq. (8) (henceforth ‘‘exact’’).

It appears that, the maximum difference between the exact solution and the approximations
does not exceed 4% for the fundamental frequency and a little over 1% for the higher frequencies
[1]. It was found that the absolute maximum error of Eq. (6) is obtained for a hinged–clamped
beam [1] and the results show that errors greater than 2% in the fundamental frequency occur
only for beams having one end either hinged or practically unrestrained and the other end
clamped or approximately fixed.

On the other hand, the results obtained by using relation (7) are in error by less than 1.5% when
the sum (b1 þ b2) is less than 1.0.

Clearly, the published work of Newmark and Veletsos [1] reveals that the calculations of the
parameters, which significantly affect the dynamic performance of beams, are simplified greatly
with the use of these approximate formulations.

Table 1

Comparison of the frequency parameters between the exact values and the N–V method

b1 b2 Mode number

1 2 3 4 5

0 0 3.14159265 6.28318531 9.42477796 12.56637061 15.70796327 Exact

3.14159265 6.28318531 9.42477796 12.56637061 15.70796327 N–V

0.01 10 3.66600954 6.68815630 9.75207435 12.84001779 15.94263705 Exact

3.62940846 6.66515656 9.73440922 12.82589889 15.93110087 N–V

0 100 3.88918500 7.00322722 10.11854568 13.23541270 16.35372435 Exact

3.81699044 6.96065983 10.08463369 13.20465869 16.32419428 N–V

1 10,000 4.04143802 7.13313310 10.24653159 13.37459282 16.50651642 Exact

4.00442698 7.10348394 10.23171197 13.36677608 16.50443133 N–V

10,000 10,000 4.72909537 7.85163553 10.99341157 14.13434261 17.27531056 Exact

4.71160397 7.85241241 10.99322162 14.13403162 17.27484240 N–V

N N 4.73004074 7.85320462 10.99560784 14.13716549 17.27875966 Exact

4.73004074 7.85320462 10.99560784 14.13716549 17.27875966 N–V
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